

#### 95-865 Unstructured Data Analytics

Recitation: Gradient descent, more on RNNs and time series analysis

Slides by George H. Chen

Suppose the neural network has a single real number parameter **w** 

♦ Loss *L* 



















Suppose the neural network has a single real number parameter  $oldsymbol{w}$ 

Loss L The skier wants to get to the lowest point The skier should move rightward (positive direction) The derivative  $\frac{\Delta L}{\Delta w}$  at the skier's position is negative tangent line initial guess of good parameter In general: the skier should move in *opposite* direction of derivative In higher dimensions, this is called gradient descent (derivative in higher dimensions: gradient)



Xį
























Automatic differentiation is crucial in learning deep nets!



Automatic differentiation is crucial in learning deep nets!

Taking the derivative of a function composition is done using the chain rule



Automatic differentiation is crucial in learning deep nets!

Taking the derivative of a function composition is done using the **chain rule** Algorithm to compute the gradient using the chain rule: **back-propagation** 

















![](_page_50_Figure_1.jpeg)

![](_page_51_Figure_1.jpeg)

![](_page_52_Figure_1.jpeg)

![](_page_53_Figure_1.jpeg)

![](_page_54_Figure_1.jpeg)

![](_page_55_Figure_1.jpeg)

![](_page_56_Figure_1.jpeg)

![](_page_57_Figure_1.jpeg)

![](_page_58_Figure_1.jpeg)

![](_page_59_Figure_1.jpeg)

![](_page_60_Figure_1.jpeg)

![](_page_61_Figure_1.jpeg)

![](_page_62_Figure_1.jpeg)

![](_page_63_Figure_1.jpeg)

![](_page_64_Figure_1.jpeg)

![](_page_65_Figure_1.jpeg)

![](_page_66_Figure_1.jpeg)

Active area of research

Active area of research

Depends on problem, data, hardware, etc

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than CPU!) if you choose # epochs/batch size poorly!!!

# UDA\_pytorch\_utils.py

A look at UDA\_pytorch\_classifier\_fit, UDA\_pytorch\_model\_transform, UDA\_pytorch\_classifier\_predict
#### A special kind of RNN: an "LSTM"

# (Flashback) Vanilla ReLU RNN

current state = np.zeros(num nodes) outputs = [] I lingeneral: there is an output at every time step for input in input sequence: linear = np.dot(input, W.T) + b \ + np.dot(current state, U.T) output = np.maximum(0, linear) # ReLU outputs.append(output) + current state = output

For simplicity, in today's lecture, we only use the very last time step's output

#### Vanilla ReLU RNN (another way to code it)

outputs = np.zeros((len(input\_sequence), num\_nodes))

```
for t in range(len(input_sequence)):
```

```
if t == 0:
  outputs[t] = np.maximum(0,
      np.dot(input_sequence[t], W.T) + b)
else:
  outputs[t] = np.maximum(
      0,
      np.dot(input sequence[t], W.T) + b
      + np.dot(outputs[t-1], U.T)
```





![](_page_77_Figure_0.jpeg)

![](_page_78_Figure_0.jpeg)

![](_page_79_Figure_0.jpeg)

![](_page_80_Figure_0.jpeg)

![](_page_81_Figure_0.jpeg)

![](_page_82_Figure_0.jpeg)

Long-term memory

![](_page_83_Figure_1.jpeg)

![](_page_84_Figure_0.jpeg)

![](_page_85_Figure_0.jpeg)

![](_page_86_Figure_0.jpeg)

![](_page_87_Figure_0.jpeg)

![](_page_88_Figure_0.jpeg)

![](_page_89_Figure_0.jpeg)

![](_page_90_Figure_0.jpeg)

![](_page_91_Figure_0.jpeg)

#### Warning: PyTorch's implementation of a vanilla RNN is different from the one in lecture due to a technicality

| pytorch / torch / nn / modules / rnn.py |                                                                            |
|-----------------------------------------|----------------------------------------------------------------------------|
| Code                                    | Blame 1825 lines (1604 loc) · 72.5 KB · 🕣                                  |
| 61                                      | constants = [                                                              |
| 171                                     | <pre>b_ih = Parameter(torch.empty(gate_size, **factory_kwargs))</pre>      |
| 172                                     | <pre># Second bias vector included for CuDNN compatibility. Only one</pre> |
| 173                                     | <pre># bias vector is needed in standard definition.</pre>                 |
| 174                                     | <pre>b_hh = Parameter(torch.empty(gate_size, **factory_kwargs))</pre>      |

In particular, PyTorch's RNN class uses an extra bias vector that is *not* actually standard...

• Think about an image with 1 column, and where the rows index time steps: this is a time series!

- Think about an image with 1 column, and where the rows index time steps: this is a time series!
- Think about a 2D image where rows index time steps, and the columns index features: this is a multivariate time series (feature vector that changes over time!)

- Think about an image with 1 column, and where the rows index time steps: this is a time series!
- Think about a 2D image where rows index time steps, and the columns index features: this is a multivariate time series (feature vector that changes over time!)
- CNNs can be used to analyze time series but inherently the size of the filters used say how far back in time we look

- Think about an image with 1 column, and where the rows index time steps: this is a time series!
- Think about a 2D image where rows index time steps, and the columns index features: this is a multivariate time series (feature vector that changes over time!)
- CNNs can be used to analyze time series but inherently the size of the filters used say how far back in time we look
- If your time series data do not have long-range dependencies that require long-term memory, CNNs can do well already!

- Think about an image with 1 column, and where the rows index time steps: this is a time series!
- Think about a 2D image where rows index time steps, and the columns index features: this is a multivariate time series (feature vector that changes over time!)
- CNNs can be used to analyze time series but inherently the size of the filters used say how far back in time we look
- If your time series data do not have long-range dependencies that require long-term memory, CNNs can do well already!
  - ⇒ If you need long-term memory or time series with different lengths, use RNNs (not the vanilla one) or transformers