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Recitation: Gradient descent, 
more on RNNs and time series analysis
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Suppose the neural network has a single real number parameter w
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Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of 
good parameter 

setting

The skier wants to get to the lowest point

∆L
∆w

The derivative        at the skier’s position is negative
∆w

∆L
∆w

In general: the skier should move in opposite direction of derivative

In higher dimensions, this is called gradient descent 
(derivative in higher dimensions: gradient)
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Victory!

Local minimum
Better 

solution

In general: not obvious what error landscape looks like! 
➔ we wouldn’t know there’s a better solution beyond the hill

In very high-dimensional parameter spaces, local minima can 
be rare but we might get stuck in parts of the error landscape 

where the slope downwards is very gradual/not steep

Popular optimizers 
(e.g., Adam, RMSProp, 
Lookahead) are variants 

of gradient descent

Suppose the neural network has a single real number parameter w

w

Loss L

The optimizer is the skier!
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Automatic differentiation is crucial in learning deep nets!
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average loss

compute gradient

We have to compute lots of 
gradients to help the 

optimizer know where to go!

Computing gradients using 
all the training data seems 

really expensive!

& move optimizer
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SGD: compute gradient using only 1 training example at a time 
(can think of this gradient as a noisy approximation of the “full” gradient)
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average loss
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& move optimizer

Batch size: how many 
training examples we 

consider at a time 
(in this example: 2)
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Best optimizer? Best learning rate? Best 
# of epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than CPU!) 
if you choose # epochs/batch size poorly!!!



UDA_pytorch_utils.py

A look at UDA_pytorch_classifier_fit, 
UDA_pytorch_model_transform, 

UDA_pytorch_classifier_predict



A special kind of RNN: an “LSTM”



(Flashback) Vanilla ReLU RNN

for input in input_sequence:

current_state = output

outputs = []

outputs.append(output)

current_state = np.zeros(num_nodes)

linear = np.dot(input, W.T) + b   \ 

        + np.dot(current_state, U.T)

For simplicity, in today’s lecture, we only use the very last time step’s output

In general: there is an output at every time step

output = np.maximum(0, linear) # ReLU



Vanilla ReLU RNN (another way to code it)

for t in range(len(input_sequence)):

outputs = np.zeros((len(input_sequence), num_nodes))

  outputs[t] = np.maximum( 

      0, 

      np.dot(input_sequence[t], W.T) + b 

      + np.dot(outputs[t-1], U.T) 

  )

if t == 0:

  outputs[t] = np.maximum(0, 

      np.dot(input_sequence[t], W.T) + b)

else:
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Time 
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term 
memory!

But need some way to 
update long-term 

memory!

… …

Long-term 
memory updater

Called a “long short-term 
memory” (LSTM) RNN

Remembers things longer 
than a vanilla RNN



Warning: PyTorch’s implementation of a 
vanilla RNN is different from the one in 

lecture due to a technicality

In particular, PyTorch’s RNN class uses an extra bias vector that 
is not actually standard…
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Analyzing Times Series with CNNs

• Think about an image with 1 column, and where the rows index 
time steps: this is a time series!

• Think about a 2D image where rows index time steps, and the 
columns index features: this is a multivariate time series (feature 
vector that changes over time!)

• CNNs can be used to analyze time series but inherently the size of 
the filters used say how far back in time we look

• If your time series data do not have long-range dependencies that 
require long-term memory, CNNs can do well already!

⇒ If you need long-term memory or time series with different 
lengths, use RNNs (not the vanilla one) or transformers


