
95-865 Unstructured Data Analytics

Slides by George H. Chen

Recitation: Gradient descent,
more on RNNs and time series analysis

Learning a Deep Net

Learning a Deep Net
Suppose the neural network has a single real number parameter w

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

initial guess of
good parameter

setting

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

initial guess of
good parameter

setting

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

initial guess of
good parameter

setting

The skier wants to get to the lowest point

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

The skier should move rightward (positive direction)

initial guess of
good parameter

setting

The skier wants to get to the lowest point

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of
good parameter

setting

The skier wants to get to the lowest point

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of
good parameter

setting

The skier wants to get to the lowest point

∆L
∆w

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of
good parameter

setting

The skier wants to get to the lowest point

∆L
∆w

The derivative at the skier’s position is negative
∆w

∆L
∆w

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of
good parameter

setting

The skier wants to get to the lowest point

∆L
∆w

The derivative at the skier’s position is negative
∆w

∆L
∆w

In general: the skier should move in opposite direction of derivative

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

tangent line

The skier should move rightward (positive direction)

initial guess of
good parameter

setting

The skier wants to get to the lowest point

∆L
∆w

The derivative at the skier’s position is negative
∆w

∆L
∆w

In general: the skier should move in opposite direction of derivative

In higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net
Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net

Victory!

Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net

Victory!

Better
solution

Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net

Victory!

Local minimum
Better

solution

Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net

Victory!

Local minimum
Better

solution

In general: not obvious what error landscape looks like!
➔ we wouldn’t know there’s a better solution beyond the hill

Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net

Victory!

Local minimum
Better

solution

In general: not obvious what error landscape looks like!
➔ we wouldn’t know there’s a better solution beyond the hill

In very high-dimensional parameter spaces, local minima can
be rare but we might get stuck in parts of the error landscape

where the slope downwards is very gradual/not steep

Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net

Victory!

Local minimum
Better

solution

In general: not obvious what error landscape looks like!
➔ we wouldn’t know there’s a better solution beyond the hill

In very high-dimensional parameter spaces, local minima can
be rare but we might get stuck in parts of the error landscape

where the slope downwards is very gradual/not steep

Popular optimizers
(e.g., Adam, RMSProp,
Lookahead) are variants

of gradient descent

Suppose the neural network has a single real number parameter w

w

Loss L

Learning a Deep Net

Victory!

Local minimum
Better

solution

In general: not obvious what error landscape looks like!
➔ we wouldn’t know there’s a better solution beyond the hill

In very high-dimensional parameter spaces, local minima can
be rare but we might get stuck in parts of the error landscape

where the slope downwards is very gradual/not steep

Popular optimizers
(e.g., Adam, RMSProp,
Lookahead) are variants

of gradient descent

Suppose the neural network has a single real number parameter w

w

Loss L

The optimizer is the skier!

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

xi

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1xi

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1xi

f1(xi)

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2xi

f1(xi)

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2xi

f1(xi) f2(f1(xi))

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

A neural net
does function
composition!

xi

f1(xi) f2(f1(xi))

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L
A neural net

does function
composition!

xi

f1(xi) f2(f1(xi))

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L
A neural net

does function
composition!

xi

yi

f1(xi) f2(f1(xi))

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L
A neural net

does function
composition!

xi

yi

f1(xi) f2(f1(xi))

L(f2(f1(xi)), yi)

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L
A neural net

does function
composition!

xi

yi

f1(xi) f2(f1(xi))

L(f2(f1(xi)), yi)

1
n

n∑

i=1

L(f2(f1(xi)), yi)

Overall loss:

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L

�All parameters:

A neural net
does function
composition!

xi

yi

f1(xi) f2(f1(xi))

L(f2(f1(xi)), yi)

1
n

n∑

i=1

L(f2(f1(xi)), yi)

Overall loss:

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L

�All parameters:

A neural net
does function
composition!

xi

yi

f1(xi) f2(f1(xi))

L(f2(f1(xi)), yi)

1
n

n∑

i=1

L(f2(f1(xi)), yi)

Overall loss:

Gradient:
∂ 1

n

∑n
i=1 L(f2(f1(xi)), yi)

∂θ

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L

�All parameters:

Automatic differentiation is crucial in learning deep nets!

A neural net
does function
composition!

xi

yi

f1(xi) f2(f1(xi))

L(f2(f1(xi)), yi)

1
n

n∑

i=1

L(f2(f1(xi)), yi)

Overall loss:

Gradient:
∂ 1

n

∑n
i=1 L(f2(f1(xi)), yi)

∂θ

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L

�All parameters:

Automatic differentiation is crucial in learning deep nets!

A neural net
does function
composition!

xi

yi

f1(xi) f2(f1(xi))

L(f2(f1(xi)), yi)

1
n

n∑

i=1

L(f2(f1(xi)), yi)

Overall loss:

Gradient:
∂ 1

n

∑n
i=1 L(f2(f1(xi)), yi)

∂θ

Taking the derivative of a function composition is done using the chain rule

Handwritten Digit Recognition

28x28 image

Training label: 6

Loss error

f1 f2

L

�All parameters:

Automatic differentiation is crucial in learning deep nets!

Algorithm to compute the gradient using the chain rule: back-propagation

A neural net
does function
composition!

xi

yi

f1(xi) f2(f1(xi))

L(f2(f1(xi)), yi)

1
n

n∑

i=1

L(f2(f1(xi)), yi)

Overall loss:

Gradient:
∂ 1

n

∑n
i=1 L(f2(f1(xi)), yi)

∂θ

Taking the derivative of a function composition is done using the chain rule

Gradient Descent

Gradient Descent

Training
example

1

loss 1

Gradient Descent

Training
example

1

loss 1

Training
example

2

loss 2

Gradient Descent

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

Gradient Descent

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Gradient Descent

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

average loss

Gradient Descent

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

average loss

compute gradient

Gradient Descent

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

average loss

compute gradient
& move optimizer

Gradient Descent

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

average loss

compute gradient

We have to compute lots of
gradients to help the

optimizer know where to go!

& move optimizer

Gradient Descent

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

average loss

compute gradient

We have to compute lots of
gradients to help the

optimizer know where to go!

Computing gradients using
all the training data seems

really expensive!

& move optimizer

Stochastic Gradient Descent (SGD)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient
& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Stochastic Gradient Descent (SGD)

compute gradient

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

& move optimizer

Stochastic Gradient Descent (SGD)

compute gradient

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

An epoch refers to 1 full pass through all
the training data

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

& move optimizer

Minibatch Gradient Descent

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Minibatch Gradient Descent

average loss

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Minibatch Gradient Descent

average loss

compute gradient
& move optimizer

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Minibatch Gradient Descent

average loss

compute gradient
& move optimizer

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Minibatch Gradient Descent

average loss

compute gradient
& move optimizer

Batch size: how many
training examples we

consider at a time
(in this example: 2)

Training
example

1

loss 1

Training
example

2

loss 2

Training
example

3

loss 3

…
Training
example

4

Training
example

5

Training
example

n

loss 4 loss 5 loss n…

Best optimizer? Best learning rate? Best
of epochs? Best batch size?

Best optimizer? Best learning rate? Best
of epochs? Best batch size?

Active area of research

Best optimizer? Best learning rate? Best
of epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Best optimizer? Best learning rate? Best
of epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than CPU!)
if you choose # epochs/batch size poorly!!!

UDA_pytorch_utils.py

A look at UDA_pytorch_classifier_fit,
UDA_pytorch_model_transform,

UDA_pytorch_classifier_predict

A special kind of RNN: an “LSTM”

(Flashback) Vanilla ReLU RNN

for input in input_sequence:

current_state = output

outputs = []

outputs.append(output)

current_state = np.zeros(num_nodes)

linear = np.dot(input, W.T) + b \

 + np.dot(current_state, U.T)

For simplicity, in today’s lecture, we only use the very last time step’s output

In general: there is an output at every time step

output = np.maximum(0, linear) # ReLU

Vanilla ReLU RNN (another way to code it)

for t in range(len(input_sequence)):

outputs = np.zeros((len(input_sequence), num_nodes))

 outputs[t] = np.maximum(

 0,

 np.dot(input_sequence[t], W.T) + b

 + np.dot(outputs[t-1], U.T)

)

if t == 0:

 outputs[t] = np.maximum(0,

 np.dot(input_sequence[t], W.T) + b)

else:

RNN layerTime series

output prediction

… …

Time 0

Time 1

Time 2

output prediction 1

output prediction 0

output prediction 2

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

…

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

outputs[t]
= np.maximum(0,
 np.dot(input_sequence[t], W.T)
 + b
 + np.dot(outputs[t-1], U.T))

…

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

outputs[t]
= np.maximum(0,
 np.dot(input_sequence[t], W.T)
 + b
 + np.dot(outputs[t-1], U.T))

In practice, a vanilla
RNN tends to forget

things quickly ☹

…

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

In practice, a vanilla
RNN tends to forget

things quickly ☹

…

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

…

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

… Add explicit long-term
memory!

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

Long-term memory

… Add explicit long-term
memory!

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

Long-term memory

… Add explicit long-term
memory!

… …

Time
t − 1

Time t

Time
t + 1

output t

output t − 1

output t + 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Time
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

Time
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Time
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Long-term
memory updater

Time
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Long-term
memory updater

Time
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Long-term
memory updater

Called a “long short-term
memory” (LSTM) RNN

Time
t − 1

Time t output t

output t − 1

Long-term memory

… Add explicit long-term
memory!

But need some way to
update long-term

memory!

… …

Long-term
memory updater

Called a “long short-term
memory” (LSTM) RNN

Remembers things longer
than a vanilla RNN

Warning: PyTorch’s implementation of a
vanilla RNN is different from the one in

lecture due to a technicality

In particular, PyTorch’s RNN class uses an extra bias vector that
is not actually standard…

Analyzing Times Series with CNNs

Analyzing Times Series with CNNs

• Think about an image with 1 column, and where the rows index
time steps: this is a time series!

Analyzing Times Series with CNNs

• Think about an image with 1 column, and where the rows index
time steps: this is a time series!

• Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

Analyzing Times Series with CNNs

• Think about an image with 1 column, and where the rows index
time steps: this is a time series!

• Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

• CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

Analyzing Times Series with CNNs

• Think about an image with 1 column, and where the rows index
time steps: this is a time series!

• Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

• CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

• If your time series data do not have long-range dependencies that
require long-term memory, CNNs can do well already!

Analyzing Times Series with CNNs

• Think about an image with 1 column, and where the rows index
time steps: this is a time series!

• Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

• CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

• If your time series data do not have long-range dependencies that
require long-term memory, CNNs can do well already!

⇒ If you need long-term memory or time series with different
lengths, use RNNs (not the vanilla one) or transformers

