(Carnegie Mellon University

Helnz

95-865 Unstructured Data Analytics

Recitation: Gradient descent,
more on RNNs and time series analysis

Slides by George H. Chen

Learning a Deep Net

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

initial guess of
good parameter
setting

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

The skier wants to get to the lowest point

initial guess of
good parameter
setting

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

initial guess of
good parameter
setting

The skier wants to get to the lowest point

The skier should move rightward (positive direction)

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

’ﬁ:
T

tangent line

initial guess of
good parameter
setting

The skier wants to get to the lowest point

The skier should move rightward (positive direction)

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

tangent line

initial guess of
good parameter
setting

The skier wants to get to the lowest point

The skier should move rightward (positive direction)

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

4loss L The skier wants to get to the lowest point
m The skier should move rightward (positive direction)
. Bw
The derivative % at the skier's position is negative

tangent line

initial guess of
good parameter
setting

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

$Loss L The skier wants to get to the lowest point
m The skier should move rightward (positive direction)
2w

AL The derivative % at the skier's position is negative

tangent line

|
|
|
|
|
|
. initial guess of
|

~good parameter

In general: the skier should move in opposite direction of derivative

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

$Loss L The skier wants to get to the lowest point
x The skier should move rightward (positive direction)
2w

AL The derivative % at the skier's position is negative

tangent line

|
|
|
|
|
|
. initial guess of
|

~good parameter

n general: the skier should move in opposite direction of derivative

n higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

NP,
\

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

.

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

\"‘:\

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

Better
solution

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

Local minimum

Better
solution

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

In general: not obvious what error landscape looks like!
= we wouldn't know there’s a better solution beyond the hill

@do ry!)
,\‘.

— essesssssded —
Local minimum

Better
solution

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

In general: not obvious what error landscape looks like!
= we wouldn't know there’s a better solution beyond the hill

@do ry!)
,\‘.

— essesssssded —
Local minimum

Better
solution

In very high-dimensional parameter spaces, local minima can
°

_be rare but we might get stuck in parts of the error landscape
where the slope downwards is very gradual/not steep

\4

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

In general: not obvious what error landscape looks like!
= we wouldn't know there’s a better solution beyond the hill

Lookahead) are variants

Popular optimizers @Ctory!)
(e.g., Adam, RMSProp, R

ot gradient descent

— essesssssded —
Local minimum
Better
. . . . solution
In very high-dimensional parameter spaces, local minima can
°

_be rare but we might get stuck in parts of the error landscape

\4

where the slope downwards is very gradual/not steep

Learning a Deep Net

Suppose the neural network has a single real number parameter w

Aloss L

In general: not obvious what error landscape looks like!
= we wouldn't know there’s a better solution beyond the hill

Lookahead) are variants

Popular optimizers @Ctory!)
(e.g., Adam, RMSProp, R

ot gradient descent

— essesssssded —»
|
iver | ol Local minimum
Thle optimizer is the skier! Better
. . . . solution
In very high-dimensional parameter spaces, local minima can
°

_be rare but we might get stuck in parts of the error landscape

\4

where the slope downwards is very gradual/not steep

Handwritten Digit Recognition

Training label: 6

28x28 image

Loss

» error

Handwritten Digit Recognition

Training label: 6

28x28 image
Xi

Loss

» error

Handwritten Digit Recognition

Training label: 6

28x28 image
Xi

Loss

» error

Handwritten Digit Recognition

Training label: 6

28x28 image
Xi

f1 (i)

Loss

» error

Handwritten Digit Recognition

Training label: 6

28x28 image
Xi

f1 (i)

Loss

» error

Handwritten Digit Recognition

Training label: 6

28x28 image
Xi

f1 (i)

fo (f1(Xi))

Loss

» error

Handwritten Digit Recognition

Training label: 6

28x28 image
Xi

f1 (i)

fo (11 (X;)

|
» | Loss

» error

Handwritten Digit Recognition

Training label: 6

28x28 image
Xi

f1 (i)

fo (11 (X;)

|
» | Loss

» error

Handwritten Digit Recognition

Training label: 6
Yi

28x28 image
Xi

f1 (i)

fo (11 (X;)

|
» | Loss

» error

Handwritten Digit Recognition

Training label: 6
Yi

28x28 image
Xi

f1 (i)

fo (11 (X;)

|
» | Loss

» error

L(f(f (X)), vi)

Handwritten Digit Recognition

Training label: 6
Yi

28x28 image
Xi

Overall loss:

f1 (i)

- 21: Lt (X)), 1)

v
2(h (XI)Z‘ Loss » error
L L(12(f1 (X)), Vi)

Handwritten Digit Recognition

Training label: 6
Yi

28x28 image
Xi

Overall loss:

f1 (i)

All parameters: ¢

- 21: Lt (X)), 1)

v
2(h (XI)Z‘ Loss » error
L L(12(f1 (X)), Vi)

Handwritten Digit Recognition

Overall loss:

Training label: 6
Yi

f1 (i)

28x28 image
Xi f1

All parameters: ¢

- 21: Lt (X)), 1)

v
i (f1 (X
2(h I)Z‘ Loss » crror
L L(fa(f (X)), vi)
f>

Gradient. 05 2aict LR(fi (%)), yi)

00

Handwritten Digit Recognition

Overall loss:

- 21: Lt (X)), 1)

Training label: 6

v

f1 (i) fo (f1(Xi))

> > >‘ Loss > error

L L(12(1(xi)), yi)

28x28 image ||
X f1 f2

1 |
All parameters: § Gradient: O 2= gg(f1 (Xi)), Yi)

Automatic differentiation is crucial in learning deep nets!

Handwritten Digit Recognition

Overall loss:

- 21: Lt (X)), 1)

Training label: 6

v

f1 (i) fo (f1(Xi))

> > >‘ Loss > error

L L(12(1(xi)), yi)

28x28 image ||
X f1 f2

Gradient: 01 2oit ggm (%)), ¥i)

Automatic differentiation is crucial in learning deep nets!

All parameters: ¢

Taking the derivative of a function composition is done using the chain rule

Handwritten Digit Recognition

Overall loss:

- 21: Lt (X)), 1)

Training label: 6

v

f1 (i) fo (f1(Xi))

> > >‘ Loss > error

L L(12(1(xi)), yi)

28x28 image ||
X f1 f2

Gradient: 01 2oit ggm (%)), ¥i)

Automatic differentiation is crucial in learning deep nets!

All parameters: ¢

Taking the derivative of a function composition is done using the chain rule

Algorithm to compute the gradient using the chain rule: back-propagation

Gradient Descent

Training

example
1
T —

loss 1

Gradient Descent

Gradient Descent

| Training (@ Training |
| example [l example |
| 1 | 2

T

loss 1 loss 2

Gradient Descent

| Training (@ Training | Training |
example [l example [l example |

loss 1 loss 2 loss 3

Gradient Descent

| Training (@ | | | I (raining |
| example [# | | | Bl example |
| | | n

A R

loss 1 loss 2 loss 3 loss 4 loss5 -+ lossn

Gradient Descent

Training “ Training |l Training | Training M Training Training ;
| example [l example [l example [l example il example (Il example |
1 | 2 | 3 | 4 | 5 |
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

Gradient Descent

Training “ Training |l Training | Training M Training Training ;
| example [l example [l example [l example il example (Il example |
1 | 2 | 3 | 4 | 5 |
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

'

compute gradient

Gradient Descent

Training [Training [Training (M Training [Training | Training |
example [l example [l example [l example [l example [KEEMl example
| 1 | 2 | 3 4 5 |

loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

'

compute gradient
& move optimizer

Gradient Descent

| Training “ Training | Training |l Training [Training |

| Training ;

| example [l example [l example [l example |l example) example |
1 | 2 | 3 | 4 o 5 |
loss 1 loss 2 loss 3 loss 4 loss 5 loss n
' l
We have to compute lots of average loss
gradients to help the l

= | |
optimizer know where to go! compute gradient

& move optimizer

Gradient Descent

Training “ Training | Training |l Training [Training | Training ;
| example [l example [l example [l example il example (Il example |
1 | 2 | 3 | 4 | 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn
| l |
We have to compute lots of average loss Computing gradients using
gradients to help the l all the training data seems

optimizer know where to go! really expensive!

compute gradient
& move optimizer

Stochastic Gradient Descent (SGD)

| Training (W Training [Training [Training | | Training (WM Training
| example [l example [l example [l example |l example | example

1 2 3 4 |

' ' ' ' ' '

loss 1 loss 2 loss 3 loss 4 loss5 -+ lossn

Stochastic Gradient Descent (SGD)

| Training |8 | | | | | Training |
| example [@ | | | Sl example |
1 ‘ | | ‘ n
loss 1 loss 2 loss 3 loss 4 loss5 -+ lossn

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training “ Training | Training |l Training [Training | Training ;
| example [l example [l example [l example il example (Il example |
1 | 2 | 3 | 4 | 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training “ Training | Training |l Training [Training | Training ;
| example [l example [l example [l example il example (Il example |
1 | 2 | 3 | 4 | 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training “ Training | Training |l Training [Training | Training ;
| example [l example [l example [l example il example (Il example |
1 | 2 | 3 | 4 | 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training “ Training | Training |l Training [Training | Training ;
| example [l example [l example [l example il example (Il example |
1 | 2 | 3 | 4 | 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training “ Training | Training |l Training [Training | Training ;
| example [l example [l example [l example il example (Il example |
1 | 2 | 3 | 4 | 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training “ Training | Training |l Training [Training | Training ;
| example [l example [l example [l example il example (Il example |
1 | 2 | 3 | 4 | 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training “ Training | Training |l Training [Training | Training ;
| example [l example [l example [l example il example (Il example |
1 | 2 | 3 | 4 | 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training “ Training | Training |l Training [Training | Training ;
| example [l example [l example [l example il example (Il example |
1 | 2 | 3 | 4 | 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

'

compute gradient

& move optimizer

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Stochastic Gradient Descent (SGD)

Training “ Training | Training |l Training [Training | Training ;
| example [l example [l example [l example il example (Il example |
1 | 2 | 3 | 4 | 5 - n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn
compute gradient An epoch refers to 1 full pass through all
& move optimizer the training data

SGD: compute gradient using only 1 training example at a time
(can think of this gradient as a noisy approximation of the “full” gradient)

Minibatch Gradient Descent

| Training W Training M Training @ Training [@ Training [l Training |
| example [l example [l example [l example [l example [l example |

1 2 3 4 |

' ' ' ' ' '

loss 1 loss 2 loss 3 loss 4 loss5 -+ lossn

Minibatch Gradient Descent

Training |@ Training [@ Training [@ Training (@ Training | Training |
example [l example [l example [l example [l example [KEEMl example
| ‘ ‘ | 4 5 | n

loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

Minibatch Gradient Descent

Training |@ Training [@ Training [@ Training (@ Training | Training

example [l example |l example |l example [l example [l example |

| \ | | 4 | 5 n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

'

compute gradient
& move optimizer

Minibatch Gradient Descent

Training |@ Training [@ Training [@ Training (@ Training | Training

example [l example |l example |l example [l example [l example |

| 1 | N n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

'

compute gradient
& move optimizer

Minibatch Gradient Descent

Training |@ Training [@ Training [@ Training (@ Training | Training

example [l example |l example |l example [l example [l example |

| 1 | N n
loss 1 loss 2 loss 3 loss 4 loss5 .-+ lossn

!

average loss

Batch size: how many l

i compute gradient
training examples we s
consider at a time & move optimizer

(in this example: 2)

Best optimizer? Best learning rate? Best
of epochs? Best batch size?

Best optimizer? Best learning rate? Best
of epochs? Best batch size?

Active area of research

Best optimizer? Best learning rate? Best
of epochs? Best batch size?

Active area of research

Depends on problem, data, hardware, etc

Best optimizer? Best learning rate? Best
of epochs? Best batch size?
Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than CPU!)
if you choose # epochs/batch size poorly!!!

UDA_pytorch_utils.py

A look at UDA pytorch classifier fit,

UDA pytorch model transform,
UDA pytorch classifier predict

A special kind of RNN: an “LSTM”

(Flashback) Vanilla ReLU RNN

current state = np.zeros(num _nodes)

outputs = []1%* — Ingeneral: there is an output at every time step

for input 1n 1nput sequence:

linear = np.dot(input, W.T) + Db \
+ np.dot(current state, U.T)

output = np.maximum(®, linear) # RelLU

outputs.append(output) «

current _state = output

For simplicity, in today’s lecture, we only use the very last time step's output

Vanilla ReLU RNN (another way to code it)

outputs = np.zeros((len(input sequence), num nodes))
for t 1n range(len(input sequence)):
if t ==
outputs[t] = np.maximum(O,
np.dot(input sequencel[t], W.T) + Db)

else:
outputs[t] = np.maximum(
0,
np.dot(input sequencel[t], W.T) + D
+ np.dot(outputs[t-1], U.T)

> » output prediction

Time series RNN layer

> » output prediction O

> » output prediction 1

> » output prediction 2

Time > » outputt— 1
t— 1 /
Timet > / » outputt
Time > » outputt+ 1
t+ 1 /

>

» outputt— 1

~ » outputt

outputs|[t]

= np.maximum (0

np.dot(input sequencel[t], W.T)
+ Db
+ np.dot(outputs[t-1], U.T))

» outputt+ 1

> » outputt— 1

In practice, a vanilla
RNN tends to forget
things quickly @

> — » outputt

outputs|[t]

= np.maximum (0
np.dot(input sequencel[t], W.T)
+ Db
+ np.dot(outputs[t-1], U.T))

> » outputt+ 1

» outputt— 1

In practice, a vanilla
RNN tends to forget
things quickly @

» outputt

» outputt+ 1

Time > » outputt— 1
t— 1 /
Timet > / » outputt
Time > » outputt+ 1
t+ 1 /

Add explicit long-term
memory!

» outputt— 1

» outputt

» outputt+ 1

Add explicit long-term
memory!

» outputt— 1

» outputt

» outputt+ 1

Add explicit long-term
memory!

> —7 » outputt— 1

Time
t— 1

Timet

> —7 > OUtpUt t

Time
t+ 1

> —7 » outputt+ 1

Add explicit long-term
memory!

> —7 » outputt— 1

/ But need some way to
.3 update long-term
memory!

> —7 > OUtpUt t

> —7 » outputt+ 1

Long-term memory

/

Add explicit long-term
memory!

87

» outputt— 1

But need some way to
update long-term
memory!

» outputt

Time t

Add explicit long-term
memory!

— » outputt— 1

But need some way to
update long-term
memory!

— » outputt

Add explicit long-term
memory!

> — » outputt— 1

But need some way to
update long-term
memory!

Long-term

memory updater/

/

Time t > — » outputt

Add explicit long-term

memory!
Time
> — » outputt— 1
t— 1
But need some way to
v / update long-term
Long-term memory!
memory updater/
Time t > — » outputt

Time t

Long-term memory

Add explicit long-term
memory!

Long-term

memory updater

=

» outputt— 1

But need some way to
update long-term
memory!

Called a "long short-term
memory” (LSTM) RNN

» outputt

Time t

Long-term memory

Add explicit long-term
memory!

Long-term

memory updater

=

» outputt— 1

But need some way to
update long-term
memory!

Called a "long short-term
memory” (LSTM) RNN

Remembers things longer
than a vanilla RNN

» outputt

Warning: PyTorch’s implementation of a
vanilla RNN is different from the one in
lecture due to a technicality

pytorch [torch / nn /[modules / rnn.py

Code | Blame @ 1825 lines (1604 loc) - 72.5 KB : (@)

61 R S |

b_ih = Parameter(torch.empty(gate_size, xkfactory_kwargs))
Second bias vector included for CuDNN compatibility. Only one
bias vector is needed in standard definition.

b_hh = Parameter(torch.empty(gate_size, xkfactory_kwargs))

In particular, PyTorch’s RNN class uses an extra bias vector that
is not actually standard...

Analyzing Times Series with CNNs

Analyzing Times Series with CNNs

e Think about an image with 1 column, and where the rows index
time steps: this is a time series!

Analyzing Times Series with CNNs

e Think about an image with 1 column, and where the rows index
time steps: this is a time series!

e Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

Analyzing Times Series with CNNs

e Think about an image with 1 column, and where the rows index
time steps: this is a time series!

e Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

e CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

Analyzing Times Series with CNNs

e Think about an image with 1 column, and where the rows index
time steps: this is a time series!

e Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

e CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

e |f yourtime series data do not have long-range dependencies that
require long-term memory, CNNs can do well already!

Analyzing Times Series with CNNs

e Think about an image with 1 column, and where the rows index
time steps: this is a time series!

e Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

e CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

e |f yourtime series data do not have long-range dependencies that
require long-term memory, CNNs can do well already!

= If you need long-term memory or time series with different
lengths, use RNNs (not the vanilla one) or transformers

