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n general: the skier should move in opposite direction of derivative

n higher dimensions, this is called gradient descent
(derivative in higher dimensions: gradient)
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Overall loss:
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> > >‘ Loss > error

L L(12(1(xi)), yi)

28x28 image ||
X f1 f2

Gradient: 01 2oit ggm (%)), ¥i)

Automatic differentiation is crucial in learning deep nets!

All parameters: ¢

Taking the derivative of a function composition is done using the chain rule

Algorithm to compute the gradient using the chain rule: back-propagation
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Best optimizer? Best learning rate? Best
# of epochs? Best batch size?
Active area of research

Depends on problem, data, hardware, etc

Example: even with a GPU, you can get slow learning (slower than CPU!)
if you choose # epochs/batch size poorly!!!



UDA_pytorch_utils.py

A look at UDA pytorch classifier fit,

UDA pytorch model transform,
UDA pytorch classifier predict



A special kind of RNN: an “LSTM”



(Flashback) Vanilla ReLU RNN

current state = np.zeros(num _nodes)

outputs = []1%*  — Ingeneral: there is an output at every time step

for input 1n 1nput sequence:

linear = np.dot(input, W.T) + Db \
+ np.dot(current state, U.T)

output = np.maximum(®, linear) # RelLU

outputs.append(output) «

current _state = output

For simplicity, in today’s lecture, we only use the very last time step's output



Vanilla ReLU RNN (another way to code it)

outputs = np.zeros((len(input sequence), num nodes))
for t 1n range(len(input sequence)):
if t ==
outputs[t] = np.maximum(O,
np.dot(input sequencel[t], W.T) + Db)

else:
outputs[t] = np.maximum(
0,
np.dot(input sequencel[t], W.T) + D
+ np.dot(outputs[t-1], U.T)
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Time t

Long-term memory

Add explicit long-term
memory!

Long-term

memory updater

=

» outputt— 1

But need some way to
update long-term
memory!

Called a "long short-term
memory” (LSTM) RNN

Remembers things longer
than a vanilla RNN

» outputt



Warning: PyTorch’s implementation of a
vanilla RNN is different from the one in
lecture due to a technicality

pytorch [ torch / nn /[ modules / rnn.py

Code | Blame @ 1825 lines (1604 loc) - 72.5 KB : (@)

61 R S |

b_ih = Parameter(torch.empty(gate_size, xkfactory_kwargs))
# Second bias vector included for CuDNN compatibility. Only one
# bias vector is needed in standard definition.

b_hh = Parameter(torch.empty(gate_size, xkfactory_kwargs))

In particular, PyTorch’s RNN class uses an extra bias vector that
is not actually standard...
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Analyzing Times Series with CNNs

e Think about an image with 1 column, and where the rows index
time steps: this is a time series!

e Think about a 2D image where rows index time steps, and the
columns index features: this is a multivariate time series (feature
vector that changes over time!)

e CNNs can be used to analyze time series but inherently the size of
the filters used say how far back in time we look

e |f yourtime series data do not have long-range dependencies that
require long-term memory, CNNs can do well already!

= If you need long-term memory or time series with different
lengths, use RNNs (not the vanilla one) or transformers



